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The effect of a strong magnetic field on two-dimensional 
flows of a conducting fluid 

By STEPHEN CHILDRESS 
Jet Propulsion Laboratory, California Institute of Technology 

(Reccivod 14 J ~ l y  1962 and in revised form 19 November 1962) 

The motion of a viscous, electrically conducting fluid past a finite two-dimensional 
obstacle is investigated. The magnetic field is assumed to be uniform and 
parallel to the velocity at  infinity. By means of a perturbation technique, 
approximations valid for large values of the Hartmann number M are derived. 
It is found that, over any finite region, the flow field is characterized by the 
presence of shear layers fore and aft of the body. The limit attained over the 
exterior region represents the two-dimensional counterpart of the axially sym- 
metric solution given by Chester (1961). Attention is focused on a number of 
nominally ' higher-order ' effects, including the presence of two distinct boundary 
layers. The results hold only when M $ Re; Re = Reynolds number. However, 
a generalization of the procedure, in which the last assumption is relaxed, is 
suggested. 

1. Introduction 
This paper is devoted to an investigation of several effects of a magnetic field on 

stationary flows of an incompressible, electrically conducting fluid. The flow 
field is assumed due to the uniform motion of a finite obstacle in an unbounded 
region. An approximate description of the pressure and velocity is given, 
assuming that (i) the magnetic field is uniform and parallel to the velocity at 
infinity, and (ii) the magnetic field is strong. The precise meaning of (ii) in the 
present problem will be clear from the results. For simplicity, the discussion is 
restricted to the two-dimensional case. However, no new methods appear to be 
required for analogous problems with axial symmetry. 

A perturbation method is used, based upon the assumption that the Hartmann 
number M is large compared to unity. The limit process actually considered rests 
upon the additional stipulations 

lim (Re/&!) = 0, (1) 

lim (Rm/M) = 0, ( 2 )  

M+ m 

&!+m 

where Re and Rm are, respectively a Reynolds number and a magnetic Reynolds 
number of the flow, both regarded here as definite functions of M .  We note that 
( 1 )  and (2), together with the additional requirement that the magnetic field be 
unperturbed by the presence of the body, in the absence of a, flow, appear suffi- 
cient to warrant the assumption (i) above. This point will not be discussed in 
detail here; however, additional comment may be found in Appendix A. 
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The problem posed above has been discussed previously by Chester (1961), 
and Chester & Moore (1961). The approximate solution given by Chester is 
derived from the solution of the linear (Stokes) equations, obtained by neglecting 
entirely inertial effects, but retaining the magnetohydrodynamic body force. 
Conditions (1) and ( 2 )  then emerge from the requirement that this solution satisfy 
also, approximately, the full Navier-Stokes equations. The justification for this 
procedure is based largely upon the global behaviour of the solution as M -+ 00, 

and, as was pointed out by Chester & Moore, requires in particular a careful 
analysis of the orders of magnitude near the point at  infinity. 

In the present paper the results of Chester are rederived for the two-dimensional 
flow by a method which introduces explicitly a limit valid near the point a t  
infinity. It is shown that an approximation to velocity and pressure which is 
valid uniformly over the flow field, excluding possibly small neighbourhoods of 
isolated points, is itself a ‘boundary-layer’ approximation to a solution of the 
linear Stokes equations. The desired asymptotic solution is then defined by a 
boundary-value problem for a simpler, approximate system of partial-differ- 
ential equations. Although this procedure seems to be conceptually clearer in 
its treatment of the effect of the strong magnetic field, additional complications 
occur in the selection of the boundary conditions at the obstacle, and, in so far 
as the limit is concerned, the perturbation method appears to offer no special 
advantages. However, the analysis of certain details of the approximation, 
including the flow field near the boundary and the first correction for the effect 
of Reynolds number, may be easily included in the present construction, using 
essentially the same methods as before. 

The starting point of the present investigation is the observation that, for 
sufficiently large M ,  the velocity normal to any line of force may be made 
arbitrarily small, uniformly over the exterior region. Thus, in the case of two- 
dimensional flow, the limit obtained over any finite region is essentially one- 
dimensional. Clearly, however, any solution of this type is incompatible with all 
boundary conditions (e.g. the velocity vanishes identically on any field line which 
intersects the boundary) and hence is, in the limit, indeterminate. However, it 
can be shown that the indeterminacy is only apparent and is due, in part, to the 
singular nature of the limit at the point at infinity. It will also be shown that a 
second limit (the outer limit), which is valid in a neighbourhood of infinity, is 
related in a natural way to an approximation which is valid uniformly over the 
entire exterior region. For this reason, the asymptotic series which is valid at  
large distances from the body will be examined in detail (see Q 3). 

The principal new results of this paper are contained in Q$3-6. In  $ 3  the 
influence of the nominally small non-linear inertial terms (that is, the first cor- 
rection for the effect of Reynolds number) is estimated and, in part, calculated 
explicitly. It is found that these corrections are in fact uniformly small, in 
agreement with the conjecture of Chester, provided (1) holds. However, the 
error is larger near lines tangent to the boundary than at other finite points. 
Also, an explicit solution representing a velocity boundary layer on surfaces 
not penetrated by the magnetic field is given in $ 4. The effect of such a boundary 
layer on the overall drag experienced by the solid is given in $ 5. 
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The methods of the present paper appear to provide a direct approach to the 
effect of Reynolds number in cases where (1) may not be satisfied. The essential 
point here is the observation that an application of the previous procedures, 
assuming now that 

(3) lim (M2/Re2)  = K (0  < K < a), 
171-t W 

leads formally to a one-parameter family of approximations, with parameter K, 
which coincides with the former result as K + a. The relevance of this result 
depends on whether or not a boundary-value problem for an approximate, 
non-linear system is solvable. No attempt is made here to resolve this question. 
However, assuming tentatively that the necessary limit exists, a generalization 
of the expansion of the drag can be given. 

2. Formulation of the problem 
We consider the stationary flow of a viscous, conducting fluid past a finite 

cylindrical obstacle, the permeability of the latter being equal to that of the fluid. 
The unperturbed stream has a velocity Ui, and the flow is subjected to a parallel 
magnetic field which is uniform at infinity. For simplicity, the magnetic field 
will be assumed to be unperturbed, i.e. equal to H i  everywhere (see Appendix A). 
The electric field may be assumed to vanish everywhere.t 

The exact equations and boundary conditions then may be written in the 
following dimensionless form. 

Re q . V q  + V p  + M 2 [ q  - (q .  i) i] - V 2 q  = 0,  (4) 

v.q = 0,  ( 5 )  

q = i, p = 0 (at infinity), (6) 

where 
q = 0 (at the body), 

Re = UL/v ,  M = pHL(~rlpv)B 
(7) 

and p the density, v the kinematic viscosity, p the permeability, and r~ the 
conductivity are constants. The physical (primed) variables are 

q' = Uwi+ Uvj = U q ,  

p' = (pUv/L)p+pp',,  
2' = Lx, 

q' = velocity; 

p' = pressure; 

L = characteristic body dimension. y' = L y ,  

The origin of the coordinate system and the length L may be chosen so that the 
two lines (the tangent lines) - co < x < + co, y = t- 1 pass through the uppermost 
and lowermost points of the boundary. It is assumed that the cylinder is convex 
and that L > 0. The boundary will consist of a closed curve which is analytic, 
except possibly at  isolated points on the tangent lines. 

The formulation may be completed by prescribing the function Re(M) .  
Actually, only three distinct cases appear, depending upon whether MIRe tends 
to infinity, a finite positive number, or zero, a.s M tends to infinity. The greater 

t The two-dimensional problem is here taken as the limit of a suitably chosen. axially 
symmetric problem, as a characteristic mean curvature tends to zero. 
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part of this paper is devoted to the first case, although we shall comment briefly 
on the more general case in 8 6. In  order to bring out at an early stage the non- 
linear aspect of the problem, we shall assume that Re = O(M4) and define 

Re = Re-: (e = M-I), (8) 

where R is a fixed, positive number, and e is regarded as a small parameter. 
We shall describe a procedure for constructing a uniformly valid approxima- 

tion to the solution (or solutions) of the exact problem. The sense in which the 
approximation is valid will be clear from its construction; however, some in- 
dication of the form of the asymptotic representation emerges from the following 
argument. Suppose that we wish to determine the behaviour of p and q at a 
finite point. Definingp" = e2p, and formally passing to the limit E = 0, the exact 
equations (4), (5) reduce to 

Vp*+[q-(q.i)i] = 0, (9u) 

v.q = 0; 
a general solution of which is 

P" = f l ( Y ) ,  ( l o b )  

where fi and fi are arbitrary functions and primes denote differentiation with 
respect to y. The following facts are immediately apparent. First, there is no 
solution of the form (IOU) which satisfies all of conditions (6), (7). Secondly, if 
conditions at infinity are relaxed, the limit is not uniquely determined by the 
remaining constraints. This suggests the existence of an outer limit (Kaplun & 
Lagerstrom 1957; Lagerstrom & Cole 1955) which describes the formation and 
decay of disturbances near the point at  infinity. The essentially one-dimensional 
limit ( lo)?  expresses the regularity of the outer solution at all finite points 
(x, y =I= _+ 1).  It is not surprising, therefore, that the central issue in the present 
problem is the construction of an approximation which is valid at  large distances 
from the body. 

3. The flow field at large distances 
We propose to study the structure of the flow field at points which lie on field 

lines situated a finite distance from the origin, but such that 1x1 = O(e-l). 
Accordingly, we introduce the new variables 

2 = &X, 9 = y, ( 1 1 4  

Q = u, v" = e-lv, j5 = ep. ( 1 1  b)  

The terms of an (outer) expansion of 4, v", and @, valid for 2 and f j  fixed, up to 
and including those of order €4, will be exhibited explicitly. This outer expansion 

has the form n 

P = c q e )  q ( 2 , g )  + 0(6,), (12) 
i = O  

t It will appear that f,(y) is piecewise constant. 
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So = 1, S, = €4, lirn(Si+,/Si) = 0 (i = 1 ,2 ,  ...) (13) 
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where Si(e), i = O,1, ..., is a sequence of functions satisfying 

E J O  

and F denotes u, v, or p .  By insertion of the outer expansion into the exact 
equations (written in the appropriate variables), one obtains the following 
equations for the terms in question: 

(14a) apo/a% - a2uo/ag2 = 0, 

ap,/az - aZul/ag2 = - uo auo/a2 - vo auo/ay", 

au,/aa + aqag  = 0. 

(15a) 

ap,pg+v, = 0, (15 6) 

(15 c) 

If  S,,, = E ,  succeeding terms to order 8,,(c) inclusive again satisfy the homo- 
geneous system (14). To obtain the governing conditions on the terms of (12), 
one notes that as e --f 0,  2, y" fixed, the boundary tends to the segment 2 = 0, 
- 1 < y" < 1. The initial conditions there to O(1) are supplied by (6), provided 
the end-points are excluded. Additional conditions are contained in the following 
remark: any partial sum of (12) is bounded, uniformly over any domain of the 
type 121 2 AP,  - co < y" < +a (denoted below by D,), as e -+ 0, where A is 
an arbitrary positive constant and 0 < CI < 1. The condition of boundedness 
over a domain D, is used here as a governing condition on the series (12). How- 
ever, as will be clear later, boundedness in this sense is a direct consequence of 
matching conditions a t  the Y-axis, which are associated with the individual terms 
of (12) (cf. Kaplun & Lagerstrom 1957). In  fact, our assertion may be justified 
by showing that the presence of boundary layers does not introduce unwanted 
orders into (12). In this respect, additional matching conditions are generally 
required to render the series unique (cf. 4 4). 

We shall further require that 

uo = 1, vo = po  = 0; u. = v. = p. = 0 (i = 1 ,2 ,  ...) a t  infinity, (16) a a a  

ui, vi, pi, regular on 2 = 0, ly"l > 1 (i = O,1,2, ...). (17) 

Conditions (17) state that a series valid for 2 > 0 determines, by analytic con- 
tinuation across the y"-axis, a series valid in 2 < 0. 

Eliminating vo and po from (la), we have 

A solution of (18) satisfying the necessary conditions at  IiEI = 0, co is given by 
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Also, (&+5) (po-u,) = 0,  

(---) a& ay"2 (p,+u,) = 0. 
a a2 

Now the initial value problem for (20a) has, in general, no bounded solutions in 
the right half-plane (Petrovsky 1954). The only acceptable solution is 

po-uo  = - 1  (Z  > 0) .  

Similarly, in the left half-plane, 

(21a) 

po+uo = 1 (a < 0). (21 b )  

Hence, if p o  is regular on Z = 0, (y"( > 1,  then uo(O, y") = 1 (and also po(O, y") = 0) 
for [y"l > 1. Consequently -uo can differ from (19) by at  most a homogeneous 
solution (eigensolution) of (18), which vanishes at all points of the ?-axis ex- 
cluding y" = & 1. The eigensolution is then eliminated by requiring that the limit 
of uo as 2 -+ 0 exist at the exceptional points, this being an immediate con- 
sequence of boundedness over D,. 

The solution defined by (14b), (19) and (21) coincides over any finite region 
with a discontinuous flow field. At the tangent lines, shear layers actually occur, 
across which, by the action of viscous and magnetic stresses, the pressure and 
velocity undergo a rapid transition. The appearance of these shear layers was 
pointed out previously by Chester (1961). 

The terms of order e& may be obtained in an analogous fashion. The relations 

which follow directly from (15), are to be integrated. The procedure is essentially 
as before, and we shall note here only that the eigensolution of order €4 is non- 
trivial; any linear combination of the functions X(2, y" + l ) ,  X(2, y" - 1)  may be 
included in ul, where 

(23) S(z,y) = 
1 exp ( -Y2/4 1.1) 

(..Ixl)& 

is the fundamental solution of the homogeneous equation (18). This follows from 
the fact that dS(Z:, y") is O(el-sa) uniformly over D,. 

Other properties of the terms u,, v,, p ,  which will be of interest follow from the 
expressions given in Appendix B. 

The partial sum of (12) of order €4 inclusive gives, when evaluated for small Z,  
the following expansion valid at  finite exterior points (x, y + k 1): 

where k ( y )  = 4 3  -log (W), 
4ll 
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and 1 f (y) are functions, generally different in the upstream and downstream 
regions, which are determined by requiring that the tangency condition a t  the 
boundary be satisfied to order Re/M2 inclusive. This means that all terms of the 
outer expansion of u to order B% exclusive must vanish on 2 = 0, IijI < 1. 

Two interesting conclusions can be drawn from (24). In  the first place, the 
tangent lines, which, to the first approximation, consist of those points where 
the limit (10) is discontinuous, become, in the second approximation, the locus of 
singularities of p .  As far as the asymptotic representation for small RelM is 
concerned, the tangent lines are excluded anyway, and the singularities appear 
to be harmless.? However, the state of affairs if ReIM is not small may not be 
simple (see 3 6). In the second place, it  is clear from (24a)  that the vorticity in 
the region I y[ > 1 decays algebraically near infinity. Now algebraic decay of 
vorticity is not observed in conventional viscous flows, and hence must here 
be due entirely to the presence of a magnetic field. Intuitively, the reason for the 
algebraic term is clear from the manner in which ( 2 2 )  is solved. The fundamental 
solution of the homogeneous equation differs from that of the heat equation by 
its ‘upstream influence ’. Consequently, the effect of a source distribution over 
any finite region (the non-linear effect) need not approach a limit exponentially 
as 2 + 0, even though the governing conditions on the 9-axis are satisfied to the 
requisite order.$ At the same time, the appearance of algebraic terms as a non- 
linear effect provides a check on the correctness of (24) for all functions Re(2M) 
satisfying (1). 

4. Boundary layers 
It was noted above that the boundedness conditions rest upon a knowledge 

of certain terms which are introduced in the outer expansion by the presence of 
boundary layers. Here, it will be shown that the effect of boundary layers is of 
order unity over any finite region, excluding exceptional points on the tangent 
lines. These remarks appear to justify the application of the boundedness con- 
dition to all orders and also serve as a basis for computing successively higher- 
order boundary-layer corrections. 

A basic result is that the outer expansion, which is derived with the intent of 
describing the flow field at large distances, is actually valid over a large region, 
and, under certain conditions, may be valid over some Jinite region. Consider, 
for example, the limits u,, v,, p,.  Expressed as functions of x, y these terms 
evidently provide an approximation to order unity, valid uniformly over space 
(excluding isolated points) if and only if (i) the boundary is strictly convex at 
the tangent lines and (ii) the uppermost and lowermost points of the boundary lie 
(to order unity) on the y-axis. If (i) does not hold, the effect of a boundary layer 
(the longitudinal boundary layer) is of order unity on the tangent lines. If  (ii) is 
relaxed, a uniformly valid approximation may still be obtained by appropriate 

t Closer examination of the expansion of 27 shows that for x fixed, y + & 1, there is 
a term of order k log E.  

$ Since essentially the same argument could be advanced whenever infinitesimal 
perturbations generate a forward-running wake, it appears that vorticity and current, 
decay algebraically whenever (Mz/Rm Re) > 1. 

28-2 
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shifts of the origins of shear layers. However, if errors are to be smaller than d, 
the shape of the boundary in the strip IyI < 1, and the presence there of a (trans- 
verse) boundary layer, must be considered (cf. remark following equation (24)). 
We shall examine these problems in turn. 

Consider first the longitudinal boundary layer. Since the boundary is convex, 
we may assume that that portion of the contour lying on the tangent lines 
consists of the two segments - A, < x < +A,, y = + 1, and -A, < x: + xo < +A,, 
y = - 1, xo being a constant, A,, A, 2 0. The shear layers now originate from the 
end-points of these segments. If A, or A, is positive, a boundary layer of thickness 
O ( d )  is developed. We wish to show that a solution valid in the boundary layer 
uniquely determines the outer expansion to order d inclusive. Consider the 
upper segment. The boundary-layer equations are obtained from (4), (5) by 
passage to the limit for E: = 0 in the variables 

x, y = E:-&(y- l),  u = u- 1, v = e-tv, p = Ep. 

The result is formally the same as (14) and hence 

( 2 5 6 )  

u= 0 when i j = m ,  (25 c )  

- u = - 1  when i j  = 0,  

in the interval -A, < x < + A,. In  the limit, the body occupies the semi-infinite 
strip -A, 6 x 6 +A,  5 < 0 in the (x,ij)-plane. Hence, for 1x1 2 A,, we require 
also that ii = 0 at infinity and S = - 1 on 1x1 = A,, jj < 0. 

The boundary-value problem (25) may be solved by distributing sources on 
= 0. Thus 

E(x, i j )  = J ~ ; k s ) s ( z - 5 , y ) d < >  (26) 

where X(x, y) is given by (23) .  Condition ( 2 5 b )  is satisfied provided that 

This integral equation has been studied by Carleman (1922). The solution is 

K(x)  = (8/7r)+ (A?-- x2)-$, 

which immediately yields the distribution of skin friction on i j  = 0. The dis- 
tribution of pressure is given by 

where 

Evidently, the surface pressure distribution caused by the boundary layer will 
contribute to the moment but not to the lift. 
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The solution in 1x1 > A, is obtained by superimposing on (26) a distribution of 
‘upstream’ or ‘downstream’ sources (i.e. fundamental solutions of the heat 
equation or its adjoint) on the vertical portions of the deformed boundary. The 
calculation is straightforward and the result need not be given here. The boundary 
layer on the lower segment may be derived from the above by a simple change 
of variables. 

The constants a and b occurring in the terms u,, v,, p ,  of the outer expansion 
(see Appendix B) are equal, respectively, to the integrated strength of the source 
distribution representing the upper and lower boundary layer. The precise 
matching condition states that the partial sum of (12) to order s* inclusive is 
valid to O ( E ~ - * ~ )  uniformly over D, if and only if 

By introducing additional limits, valid at the end-points (x, y) = (A,, I),  etc., 
the orders i$(e) (i = 2 , 3 ,  ..., v) and the corresponding terms of (12) may be 
determined. The nature of the problem is illustrated by the following example, 
We assume that A, = 0 and that the boundary has a finite radius of curvature 
a t  the point (x, y) = (0,l). The equations satisfied by the approximation valid 
near this point may be obtained in the usual way, by passing to the variables 
x* = d x ,  y* = d ( y -  l ) ,  u, e-b, ~ p .  Again we obtain essentially ( 2 5 a ) ,  but 
(25  b )  is replaced by u = 0 on y* = - $ A ( X * ) ~ ;  the problem thus involves a moving 
boundary. Proceeding as before, one concludes that, for this geometry, an 
eigensolution of order €8 is contained in (12), and that the eigensolution consists 
of a source placed at the origin of the upper shear layers. 

The transverse boundary layer is distinguished from the limit just described 
by the fact that it occurs only over those portions of the boundary penetrated 
by the magnetic field (cf. Stewartson 1960). In  the present problem, this layer 
is required in order to satisfy ( 7 )  to order d inclusive. Consider, for example, 
the case of a vertical flat plate. For this boundary, an expansion valid for 
1x1 2 0, 191 < 1 is given by 

u = R€hxk”(ZJ) + . . . , ( 2 7 a )  
v = R&(e-lzl/a - 1) P(y) -t . . . , (27b)  

13 = -sgnx+st~[k(y)+)]+.. . .  ( 2 7 c )  

In  (27 b )  we have included a term due to the transverse layer. The construction 
of this term is obvious from the manner in which it appears. 

5. Force and moment 
The leading term of the outer expansion is sufficient to determine the con- 

tributions to the dimensionless lift and moment which are of order M ,  a t  least 
for the class of bodies considered here. If the body is strictly convex at the tangent 
lines, only the uniform pressure + M on upstream parts and - M on downstream 
parts need be considered. The expansion of the drag is found to be 

(28) D = D‘/pUv = 4M + (GAS + chi) Mg + o(M*), 
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where D' is the drag in physical units, and A, and A, are defined in $4. If the 
first term of this expansion is omitted and A, = A, = 1, the result gives the first 
approximation to the drag of a horizontal flat plate of length L. Except for this 
special case, (28) is intended to apply only if the area enclosed by the boundary is 
of order L2. 

The form of the outer expansion indicates that the first contribution to the 
right-hand side of (28) ,  arising from the non-linear terms, is of order Re2/M. 
Consequently, if ( 2 )  is replaced by the linear (Stokes) equations, and the expansion 
of the drag calculated to order 6 ( M )  inclusive, the result will agree numerically 
with the Navier-Stokes value if M 6 ( M )  >> Re2. The last condition is the proper 
extension of ( 1 )  to higher-order computations of the drag, starting from the 
linear equations. 

6. A generalized limit 
The significance of the second approximation to the flow field at large distances 

is emphasized by the following remark: given a convex, analytic boundary, the 
second term of the outer expansion becomes arbitrarily large as 2 -f 0,  y" = f 1.  
This follows from the fact that the pressure term contains a factor log2 when 
expanded near the points in question. Consequently, assumption (1) is evidently 
necessary if the series is to have any meaning. However, the relation between 
our series and approximations valid for Re/M $xed is of interest and will be 
commented upon here. 

Now the approximation derived above may be termed a 'Stokes' approxi- 
mation in that linearization in the usual way is possible. For ReIM fixed, M + co, 
it  appears that the quadratic inertial terms must be partially accounted for in 
the first approximation. Let us replace the parameters M and Re by 

and consider approximations valid as N -f co, assuming now that (3) holds. The 
outer variables (1 1) are to be replaced by 

N = M2/Re, K = M2/Re2, 

' Q = u, v " =  Nv, ji = p / R e ;  Z = x / N ,  y " =  y. 

In  place of u,, v,, p ,  we consider now the limits u', v', p',  satisfying 

aut a v r  

a2 ag -+-= 0. 

It is clear that, as stated above, it is not now possible to follow the sequence of 
steps used in the linear problem, without considering at the outset the effect of 
the quadratic acceleration terms on the transfer of momentum in the direction 
of the field. Essentially the same conclusion may be drawn concerning the 
longitudinal boundary layer. (This layer now is of order N-4 in thickness.) 

From the point of view of the present paper, the system (29) is of interest 
provided that there exist, for each positive K ,  solutions which satisfy all boundary 
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and matching conditions imposed upon the outer limit. If this is the case, it is 
plausible that there also exist a one-parameter family of solutions, depending 
upon K ,  which tends to the outer limit considered previously, as K + 00. 

If it  is assumed that the needed solutions exist, however, the subsequent 
dependence of approximations upon the parameters leads to results which may 
be tested in the laboratory. We give one such consequence. Consider the exten- 
sion of the drag formula (28). One finds for N --f 00, K fixed and positive, 

D’/pU2L = ~ K , ( K )  4- (chi + cht) K,(K) N-4 +o(N-h),  (30) 

where A, and A, are defined in § 4, and KO and K, are unspecified functions which 
are universal for the class of bodies considered. If (28) and ( 3 0 )  are to agree in 
the limit of large K, then 

Z C o ( ~ )  - ~ 1 ,  K,(K) N K% as K + co. (31) 

The conditions under which (30 )  and (31) are intended to hold remain as before. 

7. Concluding remarks 
The practical application of the theory of 5 3 is very likely to be limited by the 

requirement that M / R e  be large compared to unity,? and it is therefore desirable 
to extract as much information as is possible concerning the effect of Re from the 
linear problem. The basic result of 3 3 is that the outer limit introduces, by an 
interaction process arising from the acceleration of the fluid along the field lines, 
singularities in the limit attained over a finite region. It is at  least suggested that 
the flow in the shear layers may be altered significantly (e.g. by the rapid rise 
of the maximum velocity attained in the layer) as MIRe decreases from a large 
value. Moreover, it is conceivable that the limit proposed in 5 6 does not remain 
bounded as Id1 + 0 in the tangent lines. 

If ( 2 9 n )  is linearized in the manner of Oseen (the acceleration terms being 
replaced by a.ii/ad), it  seems likely that the system should provide a better 
qualitative picture of the effect of Reynolds number than can be obtained by 
expanding for large K. For example, the first approximation to u is not symmetric 
in 0. It can also be shown that the perturbation on this linear problem leads 
again to singularities (in both u and p )  on the tangent lines. It would appear, 
therefore, that the singularities are not artificial, that is, cannot be eliminated 
by partially accounting for the inertia of the fluid through the linear term. 
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Appendix A. Perturbations in the magnetic field 

h, = h;/H, h, = h J H  satisfy 
Under the assumptions of $ 2,  the dimensionless magnetic field components 

ah, ah, 
ay ax - Rm(vh, - Uh,), 

where Rm = c p U L  = magnetic Reynolds number. Expressed in the variables 
( l l ) ,  and with 6, = h,, K, = Mh,, (A 1 )  reads 

86, Rm - I a K ,  
ag M M Z  a2 
- = -(/?h,-%h,)+--. 

Since El and u are, by virtue of the exact boundary conditions, of order unity in 
a neighbourhood of infinity, (A 2) implies that the perturbation of the uniform 
magnetic field is of order RmIM there. If (2)  is adopted as a condition on Rm, it  
then follows that the magnetic field tends to i uniformly over D,. If, in addition, 
h = i exactly when there is no flow, then the same statement holds when a flow 
is present, provided isolated points on the tangent lines are excluded. Writing 

6, = 1+qh11)(5?,ij)+o(q), ri = Rm/M, (A 3) 

6, = qhr)(Z, 9)  + o(T) ,  (A 4) 

and inserting these expansions, along with (12) ,  into (A2) and the continuity 
equation, perturbations in the magnetic field satisfy 

ahp)/ag = v0, ahiyaz + ahfyag = 0, 

hi1) = hi') = 0 (at infinity). 

Thus 

This solution is bounded over D, by virtue of the condition on the first-order 
terms in the outer expansion. 

Note that the effect of conditions on the magnetic field at the surface of a 
finite conductor will introduce harmonic perturbations in the magnetic field 
which are O(7) in any finite region. However, this part of the perturbation is 
o(y) under the outer limit process and does not enter into (A 3), (A 4). The approxi- 
mation to magnetic field which is valid uniformly over the entire exterior region 
is, therefore, of the form 

h N i + qh(l)(xlM, y) + qh@)(x, y), 

V x h(2) = V . h ( 2 )  = 0. 

The solution (A 5 )  differs from that given by Chester (1961) only by terms which 
are o(q)  uniformly over the exterior region. 

The above arguments may be applied to the limits considered in $6,  with the 
result that ( 2 )  is replaced by 

We note that (2) implies (A 3) whenever the parameter K is fixed and positive. 

(A 5 )  

(A 6) lim Rm(N)/N = 0. 
N - t m  
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Appendix B. The second approximation to velocity and pressure 

forward calculation and are given by 
The terms ul, vl, and p ,  of the outer expansion may be foundjby a straight- 

aP1 

ag 
v, = -- 

where Po is the stream function for uo, vo, defined by 

a$,/ag = uo, dr0 = 0 on the Z-axis, 

and #2, and #3 are defined as follows: 

$d = gi(r) +gd(s) - 2 G i ( ~ ,  8) (i = 1 , 2 ) ,  

43 = aX(z., g- 1 )  + bS(Z., y” + 1)) 

obtain the following expansions for small Z (cf. equation (24)): 

a, b = const. 

The integral representations of gi and Gi may be evaluated asymptotically to 

u1 = ~ m y g )  + 0 ( ~ 3 ) ,  

Pl = R 
w g ) + 0 ( 2 2 )  (1g1 > I ) ,  

where 


